Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids.
نویسندگان
چکیده
We use a modified Shan-Chen, noiseless lattice-BGK model for binary immiscible, incompressible, athermal fluids in three dimensions to simulate the coarsening of domains following a deep quench below the spinodal point from a symmetric and homogeneous mixture into a two-phase configuration. The model is derivable from a continuous-time Boltzmann-BGK equation in the presence of an intercomponent body force. We find the average domain size grows with time as t(gamma), where gamma increases in the range 0.545+/-0.014q(4) crossover in the scaled structure function, which disappears when the dynamical scaling reasonably improves at later stages (Re=37). This excludes noise as the cause for a q(2) behavior, as analytically derived from Yeung and proposed by Appert et al. and Love et al. on the basis of their lattice-gas simulations. We also observe exponential temporal growth of the structure function during the initial stages of the dynamics and for wave numbers less than a threshold value, in accordance with the diffusive Cahn-Hilliard Model B. However, this exponential growth is also present in regimes proscribed by that model. There is no evidence that regions of parameter space for which the scheme is numerically stable become unstable as the simulations proceed, in agreement with finite-difference relaxational models and in contradistinction with an unconditionally unstable lattice-BGK free-energy model previously reported. Those numerical instabilities that do arise in this model are the result of large intercomponent forces which turn the equilibrium distribution negative.
منابع مشابه
Lattice Boltzmann simulations of microemulsions and binary immiscible fluids under shear
Large scale lattice Boltzmann simulations are utilized to investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear. We use a highly scalable parallel Fortran 90 code for the implementation of the simulation method and demonstrate that adding surfactant to a system of immiscible fluid constituents can change the mixture’s ...
متن کاملThree-dimensional hydrodynamic lattice-gas simulations of domain growth and self-assembly in binary immiscible and ternary amphiphilic fluids.
We simulate the dynamics of phase assembly in binary immiscible fluids and ternary microemulsions using a three-dimensional hydrodynamic lattice-gas approach. For critical spinodal decomposition we perform the scaling analysis in reduced variables introduced by Jury et al. [Phys. Rev. E 59, R2535 (1999)] and by Bladon et al. [Phys. Rev. Lett. 83, 579 (1999)]. We find a late-stage scaling expone...
متن کاملSpinodal decomposition of off-critical quenches with a viscous phase using dissipative particle dynamics in two and three spatial dimensions
We investigate the domain growth and phase separation of hydrodynamically correct binary immiscible fluids of differing viscosity as a function of minority phase concentration in both two and three spatial dimensions using dissipative particle dynamics. We also examine the behavior of equal-viscosity fluids and compare our results to similar lattice-gas simulations in two dimensions.
متن کاملA Lattice Boltzmann Model for Multi-phase Fluid Flows
We develop a lattice Boltzmann equation method for simulating multi-phase immiscible fluid flows with variation of density and viscosity, based on the model proposed by Gunstensen et al[9] for two-component immiscible fluids. The numerical measurements of surface tension and viscosity agree well with theoretical predictions. Several basic numerical tests, including spinodal decomposition, two-p...
متن کاملStructural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions.
We investigate spinodal decomposition and structuring effects in binary immiscible and ternary amphiphilic fluid mixtures under shear by means of three-dimensional lattice Boltzmann simulations. We show that the growth of individual fluid domains can be arrested by adding surfactant to the system, thus forming a bicontinuous microemulsion. We demonstrate that the maximum domain size and the tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2003